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Abstract. This paper addresses a pseudoknot-freeness problem of DNA
and RNA sequences, motivated by biomolecular computing. Watson-
Crick (WK) complementarity forces DNA strands to fold into them-
selves and form so-called secondary structures, which are usually
undesirable for biomolecular computational purposes. This paper stud-
ies pseudoknot-bordered words, a mathematical formalization of a com-
mon secondary structure, the pseudoknot. We obtain several properties
of WK-pseudoknot-bordered and -unbordered words. One of the main
results of the paper is that a sufficient condition for a WK-pseudoknot-
unbordered word u to result in all words in u+ being WK-pseudoknot-
unbordered is for u not to be a primitive word.

1 Introduction

Adleman’s first biomolecular computing experiment [1] has shown that biochem-
ical properties of DNA such as Watson-Crick (WK) complementarity make it
possible to solve computational problems, such as NP-complete problems en-
tirely by DNA manipulation in test tubes. In DNA computing, information is
encoded into DNA by a coding scheme mapping the original alphabet onto DNA
single strands over {Adenine (A), Guanine (G), Cytosine (C), Thymine (T)}. A
computation consists of a succession of bio-operations [2] based on base-pairing
and the others. A can chemically bind to T, while C can similarly bind to G. (Note
that T is replaced by U in the case of ribonucleic acid (RNA), and that U is com-
plementary to both C and G.) Bases that can thus bind are called Watson/Crick
(WK) complementary, and two DNA single strands with opposite orientation
and with WK complementary bases at each position can bind to each other to
form a DNA double strand.

Watson-Crick complementarity often makes a single-stranded structure fold
into a high-dimensional (partially double-stranded) structure that is optimal in
terms of biochemical determinants like Gibbs free-energy [3]. In vivo the sec-
ondary structures of nucleic acids have a significant role in determining their
biochemical functions. On the other hand, in vitro biomolecular computing of-
ten considers them as disadvantages because it is very likely that the secondary
structure formation of a DNA/RNA strand will prevent it from interacting with
other DNA/RNA strands in the expected, pre-programmed way. Thence, many
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studies exist on how to free sequence sets from secondary structures [4], [5], [6],
[7], [8], [9], [10].

From the intramolecular point of view, most of these studies investigate the
question of how to design sets of DNA/RNA strands that are “free of” the hairpin
structure, known as the most common secondary structure. A hairpin structure
can be formally modelled by using the notion of an antimorphic involution. An
involution is a function f such that f2 equals the identity, and an antimorphism
f over an alphabet Σ is a function such that f(uv) = f(v)f(u) for all words
u, v ∈ Σ∗. An antimorphic involution is thus the mathematical formalization
of the notion of DNA single-strand Watson/Crick complementarity. Indeed, the
WK complement of a single DNA strand is the reverse, complement of the orig-
inal strand. Using this formalization, a hairpin can be described as zβθ(z) as
indicated in Fig. 1 (b), and modelled by the notion of a θ-bordered word [9]. In
other words, a set of θ-unbordered words is guaranteed to be hairpin-free, and
as such, results obtained in [9] on θ-bordered words for antimorphic involution
θ are of practical significance.

In this paper, we take a similar approach to modeling and structure-freeness
problems that ensures that no pseudoknots structures will be formed. Pseudo-
knots are a generic term of a cross-dependent structure that are formed primar-
ily by RNA strands. An example of the simplest and most typical pseudoknots
is shown in Figure 1, (a). An example of a pseudoknot found in E.Coli tm-
RNA is depicted in Figure 2. This depicts a pseudoknot formed by a strand
u = ρxαyγθ(x)δθ(y)σ where x and θ(x) respectively y and θ(y) bind to each
other. In this paper we consider the simpler case wherein ρ = α = δ = σ = λ, i.e.,
we investigate strands of the form u = xyγθ(x)θ(y) where θ is an antimorphic
involution function.

We namely generalize the notion of θ-(un)bordered word to that of θ-
pseudoknot-(un)bordered word. A word is called θ-pseudoknot-bordered if it has
a prefix whose image under the composition of the cyclic permutation and θ
is its suffix. Formally speaking, a word w is θ-pseudoknot-bordered if w =
xyα = βθ(yx) for some words x, y, α, and β. In the case where θ is an an-
timorphic involution, this indeed is a formal model for simple pseudoknots since
θ(yx) = θ(x)θ(y) holds.

This paper is organized as follows: After basic definitions and notations in
Sec. 2, we define the notion of θ-pseudoknot-bordered words in Sec. 3 and prove
some basic properties. We also show that the notion of θ-pseudoknot-border
generalizes the notion of a θ-border. Sec. 4 concludes this paper by providing
a counterintuitive result, Corollary 4, which proves that the sufficient condition
for a θ-pseudoknot-unbordered word u to satisfy the condition that all words in
u+ have the same property turns out to be that u be not primitive. Proofs of
the results in this paper can be found in [11].

2 Preliminaries

This section introduces basic notions of formal language theory and algebra. For
details of each notion contained in this section, we refer the reader to [13], [14].
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Fig. 1. Examples of a) a pseudoknot and b) a strand with two hairpins
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Fig. 2. A pseudoknot found in E. Coli tmRNA. Here u = ρxαyγθ(x)δθ(y)σ, where
ρ = UGC, x = CGAGG, α = G, y = GCGGUU, γ = GG, δ = UAAAAA, σ = AAAAAA, and x and
θ(x) respectively y and θ(y) bind to each other. From [12].

Let Σ∗ (resp. Σ+) be the free monoid (resp. free semigroup) generated by a
finite alphabet Σ with the concatenation operation. The identity element of Σ∗

is denoted by λ and as such, Σ+ = Σ∗ \ {λ}. An element of Σ∗ is called a word.
Hereafter words will be denoted by lower-case letters such as x, y, α, β. For a
word w ∈ Σ∗, |w| denotes the length of w. Let u and w be words over Σ. We
say that u is a prefix of w if there exists v ∈ Σ∗ such that w = uv; Similarly, u
is a suffix of w if w = vu for some v ∈ Σ∗. Let Pref(w) and Suff(w) be the set
of all prefixes and that of all suffixes of w, respectively.

A word w ∈ Σ+ is primitive if w = up with u ∈ Σ+ implies p = 1. It is a
well known fact [15], that for any word w ∈ Σ∗, there exist a unique primitive
word, which is denoted by

√
w and called the primitive root of w, and a unique

positive integer k such that w = (
√

w)k.
Let θ be a mapping on a set S. If a = θ(a) for all a ∈ S, then θ is called the

identity function or simply the identity. An involution is a mapping whose square
is the identity. In this paper we consider two mappings on Σ∗: a d-morphism
and a cyclic permutation. A d-morphism on Σ∗ is a generic term used to refer to
either a morphism or an antimorphism on Σ∗. A mapping θ from Σ∗ to itself is
defined as a morphism (resp. antimorphism) on Σ∗ if and only if θ(xy) = θ(x)θ(y)
(resp. θ(xy) = θ(y)θ(x)) for all x, y ∈ Σ∗. For a d-morphic involution θ, a word
w ∈ Σ∗ is called θ-palindrome if and only if w = θ(w). We denote by Pθ the set
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of all θ-palindromes over Σ∗. For a word w ∈ Σ∗ such that w = xy for x, y ∈ Σ∗,
yx is called a cyclic permutation of w. The set of all cyclic permutations of w is
denoted by cp(w); that is, cp(w) = {yx | w = xy, x, y ∈ Σ∗}.

With applications to the function θ being the Watson-Crick complementarity
of DNA sequences in mind, hereafter we shall deal only with non-identity map-
pings. Thus, this paper excludes singleton alphabet sets, on which there does
not exist any non-identity mapping, that is, we assume |Σ| ≥ 2.

3 θ-Pseudoknot-Bordered Words

In this section we introduce the notion of θ-pseudoknot-bordered word, for a mor-
phic or antimorphic involution θ. This notion is a formalization of the biological
concept of pseudoknot. Indeed, if θ is the Watson-Crick involution, then a θ-
pseudoknot-bordered word represents a DNA/RNA strand that forms a pseudo-
knot as pictured in Fig. 1.

In addition, the notion of θ-pseudoknot-bordered word represents a proper
generalization of the classical notion of a bordered word. A non-empty word u is
called bordered [16] if there exists a non-empty word v that is both a prefix and
a suffix of u. An unbordered word is a non-empty word that is not bordered.

The first step towards generalizing the notion of a bordered word was in
[9], where the concept of θ-bordered word was first defined, that generalized
the identity function by replacing it with a d-morphic involution θ. Here we
propose the next step in this direction by employing a cyclic permutation to
further extend the notion of a θ-bordered word to that of a θ-pseudoknot-bordered
word.

Definition 1. ([9]) Let θ be a d-morphic involution, and v, w ∈ Σ∗. Then,

1. v ≤p w if and only if w ∈ vΣ∗. The word v is a prefix of the word w.
2. v ≤θ

s w if and only if w ∈ Σ∗θ(v). The word v is a θ-suffix of the word w.
3. ≤θ

d=≤p ∩ ≤θ
s. If u, v ∈ Σ∗ and v ≤θ

d u we say that v is a θ-border of u.
A word w ∈ Σ+ is said to be θ-bordered if there exists v ∈ Σ+ such that
v <θ

d w, i.e., w = vα = βθ(v) for some α, β ∈ Σ+. A non-empty word which
is not θ-bordered is called θ-unbordered.

4. v <p w if and only if w ∈ vΣ+. v is a proper prefix of w.
5. v <θ

s w if and only if w ∈ Σ+θ(v). v is a proper θ-suffix of w.
6. <θ

d=<p ∩ <θ
s. If u, v ∈ Σ∗ and v <θ

d u we say that v is a proper θ-border of
u.

7. For w ∈ Σ+, Lθ
d(w) = {v | v ∈ Σ∗, v <θ

d w}. Lθ
d(w) denotes the set of all

proper θ-borders of a nonempty word w.
8. Dθ(i) = {w | w ∈ Σ+, |Lθ

d(w)| = i}. Dθ(i) denotes the set of all nonempty
words that have exactly i θ-borders.

We now generalize this definition with the goal of defining the notion of the
θ-pseudoknot-bordered word. This is accomplished by introducing a cyclic
permutation.
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Definition 2. Let θ be a d-morphic involution, and v, w ∈ Σ∗. Then,

1. v ≤θ
cs w if and only if there exists v′ ∈ cp(v) such that v′ ≤θ

s w. In other
words, v ≤θ

cs w iff v = xy, x, y ∈ Σ∗, and w = βθ(yx). v is called a θ-
pseudoknot-suffix of w.

2. ≤θ
cd=≤p ∩ ≤θ

cs. v is said to be a θ-pseudoknot-border of w if v ≤θ
cd w,

i.e., there exist x, y ∈ Σ∗ such that v = xy and w = xyα = βθ(yx) for
some α, β ∈ Σ∗. A non-empty word w is said to be θ-pseudoknot-bordered
if w has a non-empty θ-pseudoknot-border. A non-empty word which is not
θ-pseudoknot-bordered is called θ-pseudoknot-unbordered.

3. Lθ
cd(w) = {v | v ∈ Σ∗, v ≤θ

cd w}. Lθ
cd(w) denotes the set of all θ-pseudoknot-

borders of a nonempty word w.
4. Kθ(i) = {w | |w ∈ Σ+, Lθ

cd(w)| = i}. Kθ(i) denotes the set of all nonempty
words that have exactly i θ-pseudoknot-borders.

As in the case of θ-bordered words, the empty word λ is a θ-pseudoknot-border
of any word, i.e., ∀w ∈ Σ∗, λ ∈ Lθ

cd(w). Indeed, Definition 2 (2) allows the cases
v = xy = λ and w = α = β. Thus, a word in Kθ(1) has no θ-pseudoknot-borders
other than λ. Kθ(1) is the set of all θ-pseudoknot-unbordered words.

Note also that it is possible that a word w has itself as its θ-pseudoknot-border,
as shown by the following example.

Example 1. Let θ be an antimorphic involution on Σ∗, and let a, b ∈ Σ such that
θ(a) = b and θ(b) = a. Consider u = ababbbaa, which can be factorized into two
θ-palindromes abab and bbaa and thus u is one of its θ-pseudoknot-borders. It is
easy to see that the only other θ-pseudoknot-border is λ, and thus u ∈ Kθ(2). �	

Lastly, note that the definitions of Lθ
d(w) and Lθ

cd(w) are different in that the
former equals the set of all the proper θ-borders while the latter can include
also w, if w is a θ-pseudoknot-border of itself. This scenario is different from the
classical case of θ as well as the permutation used being the indentity, wherein all
words are automatically borders of themselves. We found our proposed definition
to be more natural in the case of θ-pseudoknot-borders, since only some words
w are θ-pseudoknot-borders of themselves while others are not. This implies
however that, while all other proposed notions are strict generalizations of both
the θ-border notions and the classical border notion, Lθ

cd(w) does not strictly
generalize Lθ

d(w) and Ld(w). This was a deliberate choice of definition on our
part since a) this definition is more natural and b) all results that we obtained
in this paper hold for the other definition choice as well, either unchanged or
augmented with a weak additional condition. For example, Proposition 2 holds
even if we define Lθ

cd to be the set of all proper θ-pseudoknot-bordered words, if
we require, in addition, that u cannot be factorized into two θ-palindromes, i.e.,
there exist no x, y ∈ Pθ such that u = xy.

In the sequel, we will employ the expression “xy is a θ-pseudoknot-border of
w” to mean “v is a θ-pseudoknot-border of w such that v = xy and w = xyα =
βθ(yx) for some x, y, α, β ∈ Σ∗”.

To begin with, we provide some immediate consequences of Definition 2.
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Corollary 1. If θ is a d-morphic involution on Σ∗, the followings hold.

1. If a word has some θ-pseudoknot-border of length n, then for every a ∈ Σ,
the number of letters a in its prefix of length n must be equal to the number
of letters θ(a) in its suffix of length n.

2. For all a ∈ Σ such that a 
= θ(a), a+ ⊆ Kθ(1).
3. If xy ≤θ

cd wn and |wm−1| < |xy| ≤ |wm|, then xy ≤θ
cd wk for all k with

m ≤ k ≤ n.

Example 2. Let Σ = {a, b}, w = aababbb, and θ be the antimorphic involution
such that θ(a) = b and θ(b) = a. Then Lθ

cd(w) = {λ, a, aa, aaba}. In particular,
setting x = aab and y = a confirms that aaba ≤θ

cd w. �	

Recall that a language L is said to be dense if ∀w ∈ Σ∗, L ∩ Σ∗wΣ∗ 
= ∅.

Lemma 1. Let θ be a d-morphic involution on Σ∗. Then Kθ(1), the set of all
θ-pseudoknot-unbordered words over Σ∗, is a dense set.

The following lemma and proposition show that if a word is θ-bordered, then it
is θ-pseudoknot-bordered.

Lemma 2. Let θ be a d-morphic involution on Σ∗ and w ∈ Σ∗. Then Lθ
d(w) ⊆

Lθ
cd(w) holds.

Proof. Let v ∈ Lθ
d(w). If v = λ, then by definition, v ∈ Lθ

cd(w); otherwise
w = vα = βθ(v) for some α, β ∈ Σ∗. This means that we can split v into x = v
and y = λ so as to satisfy the condition of v being a θ-pseudoknot-border of w,
i.e., w = vλα = βθ(λv). This implies that v ∈ Lθ

cd(w).

Note that there exists a word w ∈ Σ∗ and a d-morphic involution θ for which
Lθ

d(w) is strictly included in Lθ
cd(w).

Example 3. Let Σ = {a, b}, w = aababbb, and θ be a d-morphic involution
satisfying θ(a) = b and θ(b) = a. Whether θ is morphic or antimorphic involution,
Lθ

d(w) = {λ, a, aa} but Lθ
cd(w) = {λ, a, aa, aaba}. �	

Although, in this example, Lθ
cd(w) for a morphic involution θ and Lθ

cd(w) for an
antimorphic involution θ are the same, that is not always the case as indicated
in the following examples:

Example 4. Let us consider Σ and θ as in Example 3, a word w = aabbabaababb,
and its prefix wp = aabbab. When θ is morphic, we can decompose wp into x = aa
and y = bbab such that θ(yx) becomes the suffix of w. Thus, aabbab ∈ Lθ

cd(w) for
the morphism θ. On the other hand, aabbab 
∈ Lθ

cd(w) for an antimorphic θ. �	

Example 5. Let us consider Σ and θ as in Example 3, a word w′ = aabbabbbabaa,
and its prefix w′

p = aabbab. When θ is antimorphic, we can decompose w′
p into

x = aa and y = bbab such that θ(yx) becomes the suffix of w′. Therefore,
aabbab ∈ Lθ

cd(w
′) for the antimorphism θ. On the other hand, aabbab 
∈ Lθ

cd(w
′)

for a morphic θ. �	
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Proposition 1. Let θ be a d-morphic involution on Σ∗. Then Kθ(1) ⊆ Dθ(1).

For an antimorphic involution θ, note that the inclusion relation of Proposition
1 holds properly, i.e. Kθ(1) � Dθ(1), as shown in the following example.

Example 6. Let w = aba and θ be an antimorphic involution mapping a to b
and vice versa. Suppose w 
∈ Dθ(1). Then w should be of the form aΣ∗θ(a) [9].
However, w does not end with θ(a), and we conclude that w ∈ Dθ(1). On the
other hand, w 
∈ Kθ(1) because w = xya = aθ(yx) for x = a and y = b. �	

4 Primitive and θ-Pseudoknot-Unbordered Words

This section addresses the question of whether or not the Kleene closure of a θ-
pseudoknot-unbordered word contains only θ-pseudoknot-unbordered words. In
other words, if u ∈ Kθ(1) we are asking whether or not the inclusion u+ ⊆ Kθ(1)
holds. This question was solved positively for θ-unbordered words in [9], that
is, if u ∈ Dθ(1), then u+ ⊆ Dθ(1). In contrast, in this section we answer in the
negative the question for the case of θ-pseudoknot-unbordered words. Moreover,
we provide a sufficient condition for a θ-pseudoknot-unbordered word u ∈ Kθ(1)
to satisfy u+ ⊆ Kθ(1). Unexpectedly, the condition is that u is not primitive
(Corollary 4).

To begin with, we provide a necessary and sufficient condition for a word to
be θ-pseudoknot-unbordered.

Lemma 3. Let θ be an antimorphic involution on Σ∗. Then for u ∈ Σ+, u is
θ-pseudoknot-unbordered if and only if θ(cp(Pref(u))) ∩ Suff(u) = ∅.

The following lemma will be used as a tool to prove that a nonempty word
w ∈ Σ+ is θ-pseudoknot-bordered by reductio ad absurdum.

Lemma 4. Let θ be an antimorphic involution, and x and y be θ-palindromes.
If a word u ∈ Σ+ has xy as both its prefix and suffix, then u is θ-pseudoknot-
bordered, i.e., u 
∈ Kθ(1).

Next, we relate the property of a word w being θ-pseudoknot-unbordered to the
fact that uk is θ-pseudoknot-bordered for some integer k > 1. This result relates
to the following results obtained for the particular case of the θ-bordered words
in [9].

Lemma 5. ([9]) Let θ be an antimorphism on Σ∗ and let u ∈ Σ+. Then
θ(Pref(u)) ∩ Suff(u) = ∅ if and only if θ(Pref(u+)) ∩ Suff(u+) = ∅.

Corollary 2. ([9]) Let θ be an antimorphic involution on Σ∗ and let u ∈ Σ+.
Then u ∈ Dθ(1) if and only if u+ ⊆ Dθ(1).

In contrast to Corollary 2, it is not always the case that, given a θ-pseudoknot-
unbordered word u, the word uk remains θ-pseudoknot-unbordered for any k,
that is, in general we cannot say that u ∈ Kθ(1) if and only if u+ ⊆ Kθ(1). See
the next example.
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Example 7. Let θ be an antimorphic involution on Σ∗, and let a, b ∈ Σ such
that θ(a) = b and θ(b) = a. Since θ does not equal the identity, we can always
find such letters a and b in Σ.

Let u = aabbbbaba. Although u ∈ Kθ(1), uu is θ-pseudoknot-bordered for
x = aabbb and y = babaa. In fact, uu = xyabbbbaba = aabbbbabθ(x)θ(y). �	

Nevertheless, when θ is an antimorphic involution, we can give a characterization
of such counterexamples that takes into account the relative length of the θ-
pseudoknot-borders.

Proposition 2. Let θ be an antimorphic involution on Σ∗. Then for a θ-
pseudoknot-unbordered word u ∈ Kθ(1), if there exists k ≥ 2 such that uk has a
nonempty θ-pseudoknot-border w, then |u| < |w| < 4

3 |u| holds.

Proof. Suppose for some k ≥ 2, there were a w ∈ Lθ
cd(uk) such that either

|w| ≤ |u| or 4
3 |u| ≤ |w| hold. If |w| ≤ |u|, then this w leads us to the contradiction

immediately. Next we consider the case 4
3 |u| ≤ |w| < 2|u|. Then w ∈ Lθ

cd(u
k)

implies w ∈ Lθ
cd(u

2). In other words, there exists a decomposition w = xy such
that uu = xyα = βθ(x)θ(y) for some α, β ∈ Σ+. Since |w| ≥ 4

3 |u|, we have
xy = uup and θ(x)θ(y) = usu, where up ∈ Pref(u), and us ∈ Suff(u). Now we
have the following two cases: (1) |x| ≥ |u| or |y| ≥ |u| holds, or (2) |x| < |u| and
|y| < |u| hold.

In the first case, for reasons of symmetry, we only have to consider the case
|x| ≥ |u|. Since θ(x)θ(y) = usu, we can write θ(x) = usu

′
p for some u′

p ∈ Pref(u).
Let u = u′

pu
′
s, and we can easily check that u′

s ∈ Suff(us). Therefore, u′
su

′
p ∈

Suff(θ(x)), which equals θ(u′
p)θ(u

′
s) ∈ Pref(x). This means that θ(u′

p)θ(u
′
s) = u

because u and θ(u′
p)θ(u′

s) are prefixes of x and they have equal lengths. Since
u = u′

pu
′
s, we coclude that both u′

p and u′
s are θ-palindromes. The application

of Lemmata 3 and 4 leads now to a contradiction.
Next we consider the second case. This figure shows xy = uup and θ(x)θ(y) =

usu. Since both x and y are shorter than u, these equations imply that u = xu′
s =

u′
pθ(y), where u′

p ∈ Pref(u) and u′
s ∈ Suff(u). Comparing this equation with

xy = uup we derive y = u′
sup, and hence u = u′

pθ(up)θ(u′
s). This result, together

with u = xu′
s, implies that u′

s is a θ-palindrome and x = u′
pθ(up). Substituting

this x and u = u′
pθ(y) into θ(x)θ(y) = usu gives upθ(u′

p)θ(y) = usu
′
pθ(y), which

means that up = us and u′
p is a θ-palindrome.

Let us bring now into the picture the original condition 4
3 |u| ≤ |w| < 2|u|.

Since |w| = |u|+ |up|, 4
3 |u| ≤ |w| means 1

3 |u| ≤ |up|. Hence, |xy| = |uup| ≤ 4|up|.
This implies that either |x| ≤ 2|up| or |y| ≤ 2|up| holds. We assume the former
case holds. Then θ(x) = usu

′
p implies |u′

p| ≤ |us| because |θ(x)| = |x| ≤ 2|up| =
2|us|. Let us = u1u2 such that |u1| = |u′

p|. Note that us ∈ Pref(x) because
up, x ∈ Pref(u), |us| < |x|, and up = us. Comparing us = u1u2 with x =
θ(u1u2u

′
p) based on us ∈ Pref(x) results in u2 = θ(u2) and u1 = θ(u′

p), which
in turn derives u1 = θ(u1) because u′

p = θ(u′
p). Now Lemmata 3 and 4 lead to

a contradiction because u contains the concatenation of two θ-palindromes u1
and u2 as its prefix up and suffix us.
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In the case |w| ≥ 2|u|, either |x| ≥ |u| or |y| ≥ |u| holds. Thus, we get a
contradiction in a similar way as above. �	
Actually, in Example 7, the θ-pseudoknot-border xy of u2 satisfies |u| < |xy| <
4
3 |u|.
Corollary 3. Let θ be an antimorphic involution on Σ∗. For a word u ∈ Kθ(1),
u+ 
⊆ Kθ(1) if and only if u2 
∈ Kθ(1).

In what follows, we give a characterization of such a θ-pseudoknot-unbordered
word u with the property that u2 is not included in Kθ(1).

Lemma 6. Let θ be an antimorphic involution on Σ∗, and let u be a θ-
pseudoknot-unbordered word, i.e., u ∈ Kθ(1). Then u2 has a θ-pseudoknot-border
if and only if u = upαθ(up)βup for some up, α, β ∈ Σ+ such that upα, βup are
θ-palindromes.

Lemma 7. Let θ be an antimorphic involution on Σ∗ and u be a θ-pseudoknot-
unborderedword, i.e.,u ∈ Kθ(1). Ifu2 is θ-pseudoknot-bordered, thenu is primitive.

As a contraposition of this lemma, the following corollary holds.

Corollary 4. If u ∈ Kθ(1) and it is not primitive, then u2 is θ-pseudoknot-
unbordered, i.e., u2 ∈ Kθ(1). This further implies that u+ ⊆ Kθ(1).

To complete this discussion, we note that there exists an antimorphic involution
θ and a non-primitive word u such that uk is not θ-pseudoknot-bordered for any
k > 1.

Example 8. Let u = abaaabaa, which is clearly not primitive, and θ be an an-
timorphic involution such that θ(a) = b and vice versa. It is easy to see that
neither u nor uu are θ-pseudoknot-bordered. �	
Lastly, as the next result shows, given a θ-pseudoknot-unbordered word u, if u2 is
θ-pseudoknot-bordered then u and any θ-pseudoknot-border of u2 are primitive.

Theorem 1. Let θ be an antimorphic involution on Σ∗, and u ∈ Kθ(1) satisfy-
ing u+ 
⊆ Kθ(1). Then any θ-pseudoknot-border of u2 is primitive.

The rest of this section will show that for a word u ∈ Kθ(1), the factorization
of a θ-pseudoknot-border w ∈ Lθ

cd(u
2) into x and y is unique. In other words,

w = xy = x′y′ such that u2 = xyα = βθ(x)θ(y) and u2 = x′y′α′ = β′θ(x′)θ(y′)
mean x = x′ and y = y′. Note that x 
= y because if they were equal, this border
xy would not be primitive, which conflicts with Theorem 1.

Lemma 8. Let θ be an antimorphic involution on Σ∗, and w ∈ Σ∗. For xy ∈
Lθ

cd(w) such that x 
= y, xy = uv = vu for some different words u, v ∈ Σ+ if
and only if w has a different θ-pseudoknot-border x′y′ of the same length as xy,
i.e., x′y′ = xy but |x′| 
= |x|.
Proposition 3. Let θ be an antimorphic involution on Σ∗, w ∈ Σ∗, and u ∈
Kθ(1). If w is a θ-pseudoknot-border of u2, then the factorization of w into x
and y such that u2 = xyα = βθ(x)θ(y) for some α, β ∈ Σ∗ is unique.
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Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) FNC 2002. LNCS,
vol. 2300, pp. 376–393. Springer, Heidelberg (2002)

7. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-
free DNA languages. Acta Informatica 40, 119–157 (2003)

8. Kari, L., Konstantinidis, S., Losseva, E., Sośık, P., Thierrin, G.: Hairpin structures
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